B.A./B.Sc. Semester-III

MATHEMATICS

Paper-I (Analysis)

Time Allowed-3 Hours]
 [Maximum Marks-50

Note :-Attempt FIVE questions in all, selecting at least TWO questions from each section. All questions carry equal marks.

SECTION-A

I. (a) State and prove Cauchy's First Theorem on Limits.
(b) Prove that the sequence $\left\{\frac{2 n-7}{3 n+2}\right\}$ is (i) bounded
(ii) monotonically increasing and (iii) convergent.
II. (a) Show that the sequence $\left\{a_{n}\right\}$ where

$$
\mathrm{a}_{\mathrm{n}}=1+\frac{1}{2}+\frac{1}{3}+\ldots \ldots . .+\frac{1}{\mathrm{n}}
$$

does not converge, by showing that it is not a Cauchy sequence.
(b) If $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=l$, then prove that the positive terms series $\sum_{\mathrm{n}=1}^{\infty} \mathrm{a}_{\mathrm{n}}$ converges if $l<1$ and diverges if $l>1$. 5,5
III. (a) Prove that a necessary and sufficient condition for the convergence of a sequence $\left\{a_{n}\right\}$ of real number is that it is Cauchy sequence.
(b) Discuss the convergence of the series :

$$
\sum \frac{(\mathrm{n}!)^{2}}{(2 n)!} x^{n}, x>0
$$

IV. (a) State and prove Leibnitz test for alternating series.
(b) Show that the sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ defined by $\mathrm{x}_{1}=\sqrt{2}$,

$$
\mathrm{x}_{\mathrm{n}+1}=\sqrt{2+\mathrm{x}_{\mathrm{n}}} \text { converges to } 2 .
$$

V. (a) Discuss the convergence of series

$$
\sum_{n=1}^{\infty} \frac{1}{x^{n}+x^{-n}}, x>0
$$

(b) If the series $\sum \mathrm{a}_{\mathrm{n}}$ is absolutely convergent, then prove that $\sum \mathrm{a}_{\mathrm{n}}$ is convergent. Is its converse true?

SECTION-B

VI. (a) Show that a necessary and sufficient condition for the integrability of a bounded function f on $[a, b]$ is that to every $\varepsilon>0$, however small, there corresponds $\delta>0$ such that for every partition P of $[\mathrm{a}, \mathrm{b}]$ with norm $\mu(\mathrm{P})<\delta, \mathrm{U}(\mathrm{P}, \mathrm{f})-\mathrm{L}(\mathrm{P}, \mathrm{f})<\varepsilon$.
(b) Let $\mathrm{f}(\mathrm{x})=3 \mathrm{x}+1$ on $[1,2]$. Prove that f is R-integrable on $[1,2]$ and $\int_{1}^{2} \mathrm{f}(\mathrm{x}) \mathrm{dx}=\frac{11}{2}$.
VII. (a) State and prove Fundamental Theorem of Integral Calculus.
(b) Define absolutely convergent integral. Show that $\int_{0}^{1} \frac{\sin \frac{1}{x}}{x^{p}} d x, p>0$ converges absolutely for $\mathrm{p}<1$.
VIII. (a) If f is R-integrable on $[a, b]$ and c is number such that $\mathrm{a}<\mathrm{c}<\mathrm{b}$ then f is R -integrable on [a, c] and [c, b]. Also show that

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

(b) Show that the improper integral $\int_{a}^{b} \frac{d x}{(x-a)^{n}}$ converges iff $\mathrm{n}<1$.
IX. (a) Give an example of a bounded function f defined on a closed interval $[\mathrm{a}, \mathrm{b}]$ such that $|\mathrm{f}|$ is R -integrable but f is not.
(b) Prove that $\int_{0}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} d x=\beta(m, n), m>0, n>0$. 5,5
X. (a) Prove that $\beta(m, n)=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$ where $m, n>0$.
(b) Test for convergence of the integral

$$
\int_{0}^{\infty}\left(\frac{1}{x}-\frac{1}{\sinh x}\right) \frac{d x}{x}
$$

$$
5,5
$$

