
(Contd.)1140(2116)/RRA-7721

does not converge, by showing that it is not a
Cauchy sequence.

II. (a) Show that the sequence {a} where

111
a = 1+-+-+ +-
n 2 3 n

(b) Prove that the sequence {2n -7} is (i) bounded
3n+2

(ii) monotonically increasing and (iii) convergent.
5,5

I. (a) State and prove Cauchy's First Theorem on Limits..
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5,5true?
prove that 2>n is convergent. Is its converse

(b) If the series I an is absolutely convergent, then
__.-

'" 1I n -n' x> o.
n=) X +x

.V. (a) Discuss the convergence of series

5,5xn+) = .J2 + xn converges to 2.

(b) Show that the sequence {x} defined by x) =.J2 '
IV. (a) State and prove Leibnitz test for alternating series.

5,5

(b) Discuss the convergence of the series :

(nl)2I-·-xn xe-O.
(2n)! '

III. (a) Prove that a necessary and sufficient condition
for the convergence of a sequence {an} of real,
number is that it is Cauchy sequence.

5,5if I > 1.
11=)

co

terms series I an converges if I < 1 and diverges

(b) If Lim an+) = I, then prove that the positive
n~'" an
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converges iff n < 1.

(b) Show that the Improper integral Jb dx

a (x - a)"

5,5
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b c bf f (x) dx = J f (x) dx + J f (x) d~.
a a c

vrn. (a) If f is R-integrable on [a, b] and c is number
such that a < c < b then f is R-integrable on
[a, c] and [c, b]. Also show that

5,5

(b) Define absolutely convergent integral. Show that

. 1
1 SIn-

J __ x dx p > 0 converges absolutely for p < 1.p ,
o X

vn. (a) State and prove Fundamental Theorem of Integral
Calculus.

5,5

VI. (a) Show that a necessary and sufficient condition for
the integrability of a bounded function f on [a, b]
is that to every E > 0, however small, there
corresponds 8 > 0 such that for every partition
P of [a, b] with norm u (P) < 8, U(p, f)- L(P, f)< E.

(b) Let f(x) = 3x + 1 on [1, 2]. Prove that f is

2 11
R-integrable on [1, 2] and J f(x)dX=2'

1
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"'(I 1 )dXJ ~- sinh x --;.

r(m)r(n)
x. (a) Prove that p(m, n) = rem +n) where m, n >O.

(b) Test for convergence of the integral

eo m-I

Prove that J x dx = p(m,n),m > O,n> o.
o (1+ x)m+n .

5,5

(b)

IX. (a) Give an example of a bounded function f defined
on a closed interval [a, b] such that I f I is
R-integrable but f is not.
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